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A B S T R A C T   

Recent work demonstrating low test-retest reliability of neural activation during fMRI tasks raises questions 
about the utility of task-based fMRI for the study of individual variation in brain function. Two possible sources 
of the instability in task-based BOLD signal over time are noise or measurement error in the instrument, and 
meaningful variation across time within-individuals in the construct itself—brain activation elicited during fMRI 
tasks. Examining the contribution of these two sources of test-retest unreliability in task-evoked brain activity has 
far-reaching implications for cognitive neuroscience. If test-retest reliability largely reflects measurement error, 
it suggests that task-based fMRI has little utility in the study of either inter- or intra-individual differences. On the 
other hand, if task-evoked BOLD signal varies meaningfully over time, it would suggest that this tool may yet be 
well suited to studying intraindividual variation. We parse these sources of variance in BOLD signal in response 
to emotional cues over time and within-individuals in a longitudinal sample with 10 monthly fMRI scans. Test- 
retest reliability was low, reflecting a lack of stability in between-person differences across scans. In contrast, 
within-person, within-session internal consistency of the BOLD signal was higher, and within-person fluctuations 
across sessions explained almost half the variance in voxel-level neural responses. Additionally, monthly fluc-
tuations in neural response to emotional cues were associated with intraindividual variation in mood, sleep, and 
exposure to stressors. Rather than reflecting trait-like differences across people, neural responses to emotional 
cues may be more reflective of intraindividual variation over time. These patterns suggest that task-based fMRI 
may be able to contribute to the study of individual variation in brain function if more attention is given to 
within-individual variation approaches, psychometrics—beginning with improving reliability beyond the modest 
estimates observed here, and the validity of task fMRI beyond the suggestive associations reported here.   

1. Introduction 

Functional MRI (fMRI) was developed as a tool to investigate prop-
erties of brain function in humans. The classic approach to doing so 
involves contrasting the blood-oxygen-level-dependent (BOLD) signal 
while participants are engaged in a task designed to elicit a particular 
cognitive or affective state with BOLD signal during a relevant control 
condition (Huettel et al., 2004; Poldrack et al., 2011). This approach has 

stimulated substantial knowledge about the functional properties of 
specific brain regions (Garrison et al., 2013; Sergerie et al., 2008; 
Shenhav et al., 2013). 

More recently, fMRI data have been used to examine differences in 
brain function across individuals. A recent meta-analysis and analysis of 
two large cohorts (Elliott et al., 2020) calls into question the validity of 
using task-based fMRI to study these types of between-person individ-
ual-differences in brain function, demonstrating low test-retest 
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reliability for many common fMRI tasks. These findings suggest that the 
stability of task-related BOLD signal over time is relatively poor, which 
undermines the utility of fMRI as a brain-based biomarker (Elliott et al., 
2020). Test-retest reliability was particularly poor for amygdala acti-
vation in tasks involving emotion processing, which have frequently 
been used to study individual differences in brain function. These types 
of tasks have been used frequently to investigate whether brain function 
varies as a function of mental health symptoms (Etkin and Wager, 2007; 
Groenewold et al., 2013), personality traits (Canli et al., 2001; Gray 
et al., 2005), or environmental experiences, such as early-life adversity 
(McLaughlin et al., 2019; Tottenham et al., 2011). Here, we investigate 
an alternative interpretation of this finding—that the BOLD signal 
measured in task-based fMRI is reliable, but exhibits high within-person 
variability over time. 

The relatively low intra-class correlation coefficients (ICCs) observed 
in the recent meta-analysis (Elliott et al., 2020) mean that a participant 
who exhibits high activation in a particular region in response to a task 
at one time is not more likely to exhibit high activation in that same 
region when tested at a later time on the same task, relative to others in a 
sample. One possible source contributing to this variability in task-based 
BOLD signal over time is noise or measurement error in the instrument 
(Chen et al., 2018; Gonzalez-Castillo et al., 2017). In addition, the 
construct itself—brain activation elicited during fMRI tasks—may vary 
meaningfully across time within-individuals. In other words, variability 
in neural activation to tasks may be more state-like than trait-like. 
Indeed, influential recent work suggests that a wide range of psycho-
logical (e.g., affect) and physiological (e.g., heart rate) constructs exhibit 
greater variability within individuals than across individuals (Fisher 
et al., 2018). Variation in neural response to fMRI tasks may in part 
reflect high temporal variability (and so low test-retest reliability) in the 
construct itself, as well as measurement error. Examining the contri-
bution of these two sources of test-retest unreliability in task-evoked 
brain activity has far-reaching implications for cognitive neuroscience. 
If test-retest reliability largely reflects measurement error, it suggests 
that task-based fMRI has little utility in the study of either inter- or 
intra-individual differences. On the other hand, if task-evoked BOLD 
signal as a construct varies meaningfully over time, it would suggest that 
this tool may still be well suited to studying intraindividual (i.e., 
within-individual) variation. 

We use data from a unique longitudinal study involving monthly 
fMRI scans of an emotion processing task on the same individuals over 
the course of one year to characterize the degree of inter- and intra- 
individual variability in neural responses to affectively-salient cues 
and the reliability of these responses over time and the internal con-
sistency of the BOLD signal within individuals. This intensive longitu-
dinal approach aligns with the emerging field of precision neuroscience, 
which focuses on repeated sampling of fMRI data from the same in-
dividuals over time to examine patterns of stability and variability in 
neural function (Braga and Buckner, 2017; Gordon et al., 2017; Gratton 
et al., 2020; Laumann et al., 2015; Poldrack, 2017). Early precision 
neuroscience studies revealed dynamic fluctuations in brain function 
within individuals in networks previously thought to be stable based on 
between-participant designs (Poldrack et al., 2015). Influential recent 
work recommends within-participant longitudinal designs as a more 
powerful strategy for examining brain-behavior associations than 
cross-sectional brain-wide association studies (Marek et al., 2022). 
Neural responses during emotion processing may be particularly likely 
to vary within-individuals over time, given the high within-individual 
variation of affect (Rocke et al., 2009). Meta-analysis of these types of 
emotion processing tasks consistently reveal activation in amygdala as 
well as widespread cortical recruitment across regions in the salience 
network, such as anterior insula; the default network, including pre-
cuneus, posterior cingulate, medial prefrontal cortex, and middle tem-
poral gryus; the frontoparietal network, including inferior, middle, and 
superior frontal gyrus; as well as the fusiform and other cortical regions 
in the ventral visual stream (Fusar-Poli et al., 2009; Sabatinelli et al., 

2011). Despite these robust patterns at the group-level, the stability of 
neural responses in affective processing tasks over time was low in the 
recent meta-analysis (Elliott et al., 2020). To evaluate the degree to 
which this variability reflects meaningful within-individual fluctuations 
in neural responses versus measurement error, we estimate the internal 
consistency of the BOLD signal across the brain during an emotion 
processing task, within individuals, at each session. In doing so, we aim 
to contribute to the emerging debate about the reliability and utility of 
task-based fMRI for studying individual variation (Elliott et al., 2020; 
Kragel et al., 2021). 

Characterizing the reliability of task-related BOLD signal is impor-
tant because it puts an upper bound on our ability to detect valid asso-
ciations with other measurements. In fact, an indirect indication of the 
reliability of a signal is the ability to detect expected associations with 
other constructs of interest. We are careful to note that there is not a one- 
to-one correspondence between reliability and the detection of associ-
ations. While higher reliability increases the ability to detect associa-
tions, larger effect sizes do the same; and while some reliability is 
necessary for detection, high reliability does not allow one to detect 
associations that are not present. However, detection of true associations 
suggests that reliability is high enough for a given effect size, with the 
important caveat that one does not know whether the detected effect is 
true or not. Moreover, as has been written about extensively elsewhere 
(Pashler and Harris, 2012), low reliability resulting in low statistical 
power increases the probability that any given result is a false positive, 
and with a publication filter on significant effects, inflates the propor-
tion of false positives in the literature. 

As such, we further investigate reliability by leveraging our dense 
sampling approach to determine whether we can predict variability in 
task-related BOLD response over time, within individuals. Specifically, 
we evaluate whether monthly fluctuations in mood, sleep quantity, and 
exposure to stressful life events (SLEs) are associated with changes in 
neural responses to affective cues over time, within individuals. These 
factors each fluctuate dynamically within individuals over time and 
have been associated with neural responses to aversive cues in between- 
person studies (Arnone et al., 2012; Goldstein-Piekarski et al., 2015; 
Larson and Ham, 1993; Mroczek and Almeida, 2004; Sliwinski et al., 
2009; Swartz et al., 2015b, 2015a; Wang et al., 2006). These studies 
have demonstrated increases in activation of amygdala, anterior insula, 
and other regions of the salience network to aversive stimuli in in-
dividuals who have experienced high levels of SLEs (McLaughlin et al., 
2019; Swartz et al., 2015b). Associations of sleep with neural responses 
during emotional processing are somewhat mixed and have largely 
focused on the amygdala. Greater sleep duration, particularly REM 
sleep, is associated with reduced amygdala reactivity to aversive stimuli 
(van der Helm et al., 2011; Wassing et al., 2019), whereas sleep depri-
vation predicts elevated amygdala reactivity (Yoo et al., 2007). A recent 
analysis from the UK Biobank observed the opposite pattern, however, 
with habitual short sleep associated with decreased amygdala reactivity 
(Schiel et al., 2022). Studies linking mood to neural responses to 
emotion processing have also observed that higher levels of negative 
affect are related to increased amygdala reactivity and decreased pre-
frontal recruitment to aversive stimuli (Bastiaansen et al., 2018; Forbes 
et al., 2011). However, influential recent work has shown that 
between-person associations often do not align well with 
within-individual associations of the same constructs for a range of 
psychological and physiological variables (Fisher et al., 2018). For this 
reason, we did not necessarily expect to find the neural regions that have 
been observed in between-person studies of mood, sleep, and SLEs to 
emerge in our within-person analyses. We are unaware of prior work 
examining whether fluctuations in mood, sleep, or SLEs are related to 
within-individual variation in neural responses to affective stimuli. 

2. Method 

Further information and requests for resources should be directed to 
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and will be fulfilled by the lead contact, John C. Flournoy (john_-
flournoy@g.harvard.edu; jcflournoyphd@pm.me). 

2.1. Data and code availability 

Code and data repository: https://osf.io/zy92w/.  

• De-identified human standardized fMRI data have been deposited at 
repositories listed above. They are publicly available as of the date of 
publication.  

• All original code has been deposited at repositories listed above and 
is publicly available as of the date of publication.  

• Any additional information required to reanalyze the data reported 
in this paper is available from the lead contact upon request. Please 
let the authors know immediately if any resources are missing from 
the public repositories so they can be updated. 

2.2. Sample 

The study was designed to examine within-individual variation in 
neural responses to affective stimuli and associations of that variability 
with other key constructs that fluctuate over time within-individuals. A 
sample of 30 female adolescents aged 15–17 participated in a year-long 
longitudinal study that included 12 in-lab assessments conducted each 
month (355 monthly assessments) with neuroimaging completed at 10 
of the 12 monthly visits, excluding the baseline and final visit (292 
scans). Given our within-individual approach, we aimed to limit 
between-person variability in sex and age, focusing on adolescent fe-
males given the high levels of interpersonal stressors and stress 
vulnerability in this group (Hankin et al., 1998; Lewinsohn et al., 1998; 
Rudolph and Hammen, 1999). Participants were recruited from schools, 
libraries, public transportation, and other public spaces in the general 
community in Seattle, WA between April 2016 and April 2018. Inclusion 
criteria included female sex, aged 15–17 years at study onset, possession 
of a smart phone with a data plan, and English fluency. 

Participants were excluded based on the following criteria: IQ < 80, 
active substance dependence, psychosis, presence of pervasive devel-
opmental disorders (e.g., autism), MRI ineligibility (e.g. metal im-
plants), psychotropic medication use, active safety concerns, and 
inability to commit to the year-long study procedure. 

Twenty-two participants identified as White (73%), 4 as Asian 
(13%), 2 as Black (7%), and 2 as mixed race (7%). Participants’ income- 
to-needs ratios were computed based on their parents’ report of total 
combined household income and household size. Four participants were 
in families with income below the poverty line (i.e., income-to-needs 
ratio below 1; 13%), 12 participants between 1 and 3 (30%), and 13 
participants between 3 and 10 (33%). One participant did not provide 
income information. All study procedures were approved by the Insti-
tutional Review Board at the University of Washington. Written 
informed consent was obtained from legal guardians and adolescents 
provided written assent. Participants were paid increasing amounts of 
money for each monthly visit, for a total of $905 in possible earnings 
(Table S1). 

2.3. Emotional processing task 

Participants completed an emotional processing task involving pas-
sive viewing of emotional faces, including fearful, happy, neutral, and 
scrambled faces. We focus on the contrast of fearful > neutral faces, to 
examine variation in neural responses to aversive stimuli. This is a 
widely used contrast in affective neuroscience thought to capture neural 
responses to the presence of a potential threat in the environment. 
Indeed, similar tasks assessing neural responses to aversive stimuli have 
frequently been used in studies aimed at identifying brain-based bio-
markers associated with stress, psychopathology, and numerous other 
between-person characteristics (Arnone et al., 2012; McCrory et al., 

2011; Monk et al., 2008; Swartz et al., 2015b, 2015a; Thomas et al., 
2001; Tottenham et al., 2011). 

The task was completed across one run that included twelve 18-sec-
ond blocks (three blocks each of fearful, happy, neutral, and scrambled 
faces). Blocks were displayed in a pseudo-random order that ensured 
that no block type was displayed twice in a row. ITI blocks were inter-
leaved between blocks of faces. During each block, 36 faces of different 
actors expressing the same emotion were displayed for 300 ms each, 
with a space of 200 ms following each face, based on prior face pro-
cessing tasks (Somerville et al., 2004). The total duration of the task was 
4.5 min. The task was intentionally designed to be brief, given evidence 
that the amygdala, hippocampus, and other temporal cortex regions 
involved in emotional processing habituate rapidly to emotional faces 
(Breiter et al., 1996; Fischer et al., 2003). Similar brief tasks have been 
used to capture neural responses to affective stimuli in large-scale data 
collection efforts, such as the Human Connectome Project and the UK 
Biobank (Barch et al., 2013; Miller et al., 2016; Somerville et al., 2018). 

Participants were asked to respond to prompts unrelated to the faces 
with a button press during the task to ensure they were paying attention. 
Specifically, an image (e.g., a scene or object) was displayed at one point 
in the run. A second image was subsequently presented and participants 
had to indicate whether the image was the same or different. Otherwise, 
participants were only asked to keep their eyes open and view the faces. 
Faces were drawn from the NimStim stimulus set (Tottenham et al., 
2009). The “calm” faces from this dataset were used as neutral expres-
sions, as these expressions are potentially less emotionally evocative 
than neutral faces, which are perceived as negatively-valenced (Tot-
tenham et al., 2013). The scrambled faces consisted of the images of 
neutral faces with the pixels scrambled so as to resemble random static. 
Task-related functional activation for this contrast, averaged across all 
participants and months, controlling for the effect of time (centered at 
the first month), is depicted in Fig. S1. 

2.4. Image acquisition and pre-processing 

Neuroimaging data were acquired using a Phillips Achieva 3T 
scanner using a 32-channel head coil at the University of Washington’s 
Integrated Brain Imaging Center. Anatomical scans (T1-weighted 
MPRAGE volumes; TR=2530ms, TE=3.5ms, flip angle=7◦, FOV=256 ×
256, 176 slices, in-plane voxel size=1mm3) were acquired for co- 
registration with functional magnetic resonance imaging (fMRI). 
Blood oxygenation level dependent (BOLD signal during functional runs 
was acquired using a gradient-echo T2*-weighted echo planar imaging 
(EPI) sequence. 37 3mm thick axial slices were acquired sequentially 
and parallel to the AC-PC line (TR=2s, TE=25ms, flip angle=79◦, Inter- 
slice gap=.6mm, FOV=224 × 224 × 132.6, matrix size=76 × 74). Prior 
to each scan, four images were acquired and discarded to allow longi-
tudinal magnetization to reach equilibrium. 

Preprocessing was performed using FSL (Smith et al., 2004) and 
AFNI (Cox, 1996; Cox and Hyde, 1997), with the following steps applied 
to functional images: (a) motion and slice timing correction in FSL; (b) 
skull-stripping using AFNI’s 3dSkullStrip; (c) despiking using AFNI’s 
3dDespike tool; and (d) for the purposes of whole-brain analysis, but not 
reliability and internal consistency analyses, smoothing with a 6mm 
full-width half-max kernel using SUSAN in FSL. Nuisance regressors 
entered into person-level models consisted of 6 rigid-body motion re-
gressors as well as time-series extracted from white matter and ventri-
cles entered to control for physiological noise (Behzadi et al., 2007). 
Outlier volumes in which framewise displacement exceeded 1mm, the 
derivative of variance in BOLD signal across the brain (DVARS) excee-
ded the upper fence, or signal intensity was more than 3 SD from the 
mean were excluded by regressing these volumes out of person-level 
models. First-level models were estimated on these preprocessed 
BOLD images. The resulting contrast images were registered first to a 
study-specific template (Ghosh et al., 2010; Huang et al., 2010; “Python 
Client - TemplateFlow,” n.d.), and then to the standard space of the 
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Montreal Neurological Institute (MNI) template at 2mm resolution. 
Anatomical co-registration of the functional data from each monthly 
assessment with each participant’s T1-weighted image from that same 
monthly assessment and normalization were performed using Advanced 
Normalization Tools (ANTs). All transforms were concatenated so only a 
single interpolation would be performed. 

2.5. Quantification and statistical analysis 

2.5.1. Reliability analyses 
The term “reliability” can be used to refer to many kinds of consis-

tencies between measurements, all of which have the shared goal of 
capturing how similar another measurement is expected to be using the 
same instrument (see Revelle and Condon, 2019 for a thorough review). 
Here, we focus on test-retest reliability and internal consistency as 
quantifications of two distinct kinds of consistency or reliability in the 
BOLD signal (though each is commonly used to index an instrument’s 
signal-to-noise ratio). We describe our approach to estimating each of 
these in detail below. 

Anatomical Regions. Analyzing parcellated brain data can aid com-
plete reporting of effect sizes across the whole brain, and increase sta-
tistical power (Cosme et al., 2022; Flournoy et al., 2020). For this reason, 
reliability and internal consistency were assessed using the Schaefer 400 
cortical parcellation scheme developed using both task-based and 
resting-state fMRI methods (Schaefer et al., 2018), as well as 14 

anatomically-defined subcortical areas in the Harvard/Oxford subcor-
tical atlas (brainstem; right and left accumbens, amygdala, hippocam-
pus, caudate, pallidum, putamen, thalamus) and 24 size-matched 
control regions defined as spheres in right and left cerebral white matter 
and lateral ventricle from the Harvard/Oxford subcortical atlas. We 
included these control regions as a baseline comparison because we 
expect BOLD signal to have lower test-retest reliability and internal 
consistency in these regions than in cortical and subcortical regions. 
Each of these regions-of-interest (ROIs) were registered to each partic-
ipant’s monthly T1 image using ANTs, as described above. 

To create size-matched control ROIs in left and right white-matter 
and ventricles, we used a random subsample of 10 cortical parcels and 
all subcortical regions (N = 14) to define the size of ROI for size- 
matching. Our procedure was as follows.  

1. Compute the volume, in voxels, of the target subcortical region or 
cortical parcel.  

2. Randomly select a voxel coordinate from the control region (left or 
right white matter or ventricle).  

3. Construct a sphere with a radius such that the volume of the sphere is 
equal to the volume of the target region or parcel.  

4. Ensure that the sphere falls within the control region. If not, repeat 
steps 1-3.  

5. Compute the relevant statistic using voxels within the defined 
sphere. 

Fig. 1. Methods used to estimate test-retest reliability. A: The unit of analysis is the mean of voxels in a cortical parcel or subcortical region of interest (ROI) for 
the contrast for Fear > Neutral measured for each participant at each month. B: Test-retest reliability (i.e., temporal stability) is operationalized as the similarity (in 
rank order of participants) of the BOLD signal in each parcel from month to month. C: The data are observations for a particular parcel from each participant, for each 
month; we estimate an ICC for each pair of adjacent months for that parcel. This yields N x S rows of data for each parcel, where N is the sample size and S is the 
number of sessions (months). D: To estimate test-retest reliability, we compute an ICC that decomposes the total variance into the variance in participant means 
across months and error variance, after conditioning on the group means for each session. The ICC is then computed as the variance due to participant means over the 
total variance. We do this for each pair of adjacent months and then compute an average ICC across all pairs using meta-analysis. We compute this overall ICC as the 
measure of test-retest reliability for each of the 414 parcels and subcortical ROIs, and 5 regions of no-interest (see Methods for details). 
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Test-Retest Reliability. Test-retest reliability—a measure of temporal 
stability across participants in a sample (Chen et al., 2021, 2018; Koo 
and Li, 2016; Shrout and Fleiss, 1979)—was estimated by computing the 
ICC for BOLD signal in the Fear > Neutral contrast for each participant, 
at each session, in each cortical parcel and subcortical region (see 
Fig. 1). A Bayesian multilevel model (i.e., hierarchical linear model) was 
fit for each pair of adjacent sessions (e.g., sessions 1 and 2, sessions 7 and 
8); estimating a single ICC across all 10 sessions for each participant 
produced consistently lower ICC estimates than this approach (see Fig. 
S2). Using brms (version 2.15.0; Bürkner, 2018, 2017) in R (v4.04; R 
Core Team, 2021) we fit the model 

yij = β0 + βi + πj + ϵij  

where β0 is the overall mean (i.e., the grand mean across all partici-
pants), βi is the fixed effect of session i, and πj is the random intercept of 
participant j. The ICC was then calculated as 

ICCpair =
σ2

π
σ2

π + σ2
ϵ  

where σπ
2 is the variance of π (i.e., random intercept variance) and σε

2 is 
the residual (i.e., error) variance. ICCpair corresponds to the ICC(3,1), 
also referred to as consistent agreement, (Chen et al., 2021, 2018; Koo 
and Li, 2016; Shrout and Fleiss, 1979) and reflects the proportion of 
variance due to participant means across sessions, and is also the ex-
pected correlation between observations across sessions from the same 
participant (Chen et al., 2018). Bayesian estimation was chosen pri-
marily because it allows straightforward computation of credible in-
tervals of the quantities of interest. The resulting posterior distributions 
were logit-transformed to rescale them from [0,1] to (-∞, ∞) and the 
medians and standard deviations were meta-analyzed using brms to 
obtain a single estimate of individual consistency between temporally 
adjacent sessions. The meta-analytic model was 

ICCpair ∼ Normal(ICCtrue, ICCSE)

ICCtrue ∼ Normal(μ, σ)

where ICCpair is the set of observed pairwise ICC estimates, ICCtrue is the 
latent true ICC, ICCSE is the set of uncertainties (standard deviations) in 
the observed ICCpair estimates, and μ and σ are the mean and standard 
deviation, respectively, of ICCtrue. The resulting posterior of parameter μ 
was logit− 1-transformed to rescale back to [0,1] and the resulting me-
dian and 95% credible interval were interpreted as estimates of test- 
retest reliability of neural responses for each region across all in-
dividuals in the sample. 

This approach to estimating reliability evaluates the stability of 
neural responses in each region within participants over time by eval-
uating how much the data from each participant deviates from their 
person-level mean across sessions. Higher estimates reflect higher test- 
retest reliability in BOLD signal across participants (i.e., a high ICC 
implies that a participant with high BOLD signal in a particular region in 
a particular session, relative to others in the sample, is also likely to have 
high BOLD signal in that region in other sessions). 

Internal Consistency. Low test-retest reliability is partly a function of 
the sources of variance that contribute to the magnitude of the error 
variance term, σε

2, in the denominator. This term captures all unmodeled 
variance, and can reflect a mixture of high measurement error in 
measuring BOLD signal and high within-individual variability in re-
sponses over time. The internal consistency of multiple indicators of the 
same construct, based on generalizability theory (Bonito et al., 2012), is 
an alternative to the test-retest approach to quantifying instrument 
consistency that can disaggregate these sources of error. Reliable in-
dicators that exhibit high within-individual variability (i.e., that fluc-
tuate together over time), would produce high internal consistency, but 
low test-retest correlations. In these data, we can disaggregate variance 
not only into temporal stability across participants (reflecting test-retest 

correlations), but also into consistency across voxels at each session 
(reflecting internal consistency). This is one way to begin to approach 
quantifying the extent to which low test-retest reliability is a result of 
measurement error versus fluctuations of an internally consistent signal 
over time (Fig. 2). This approach is similar to evaluating the internal 
consistency of items on a scale by computing Cronbach’s alpha, which is 
based on the average inter-item correlations (Fig. S3). Here, instead of 
items on a scale we evaluate the stability of BOLD signal across voxels 
within distinct anatomical regions. As we would do with items on a 
self-report scale, we use voxel responses within person, within session, 
to estimate the reliability of the measurement instrument (in this case, 
parcels and subcortical regions). If a scale has good internal consistency, 
when the value on a single item increases for a participant at a particular 
administration, the values of other items on the scale should similarly 
increase. Equivalently, if the BOLD signal is measured consistently 
across voxels within individual, within session, when the contrast value 
in a voxel increases for a participant in a particular session, the value of 
other voxels in that parcel or subcortical region should similarly increase 
(Fig. S3). 

Internal consistency was estimated for the same set of parcels and 
subcortical regions described above to determine the proportion of 
variance accounted for by consistency in BOLD signal across the voxels 
within each region for each participant at each session. This approach 
examines the degree to which BOLD signal for the voxels in a single 
parcel or subcortical region fluctuate consistently with one another 
within each session for each participant (i.e., participant-sessions). To 
do so, we fit a multilevel model using brms to data from each parcel 
across all sessions with the form 

yijk = β0 + βi + λj + πjk + ϵijk,

where β0 is the overall mean, βi is the fixed effect of session i, λj is the 
random intercept of participant j, and πjk is the random intercept for 
each participant j’s session k. From this we get estimates of the variance 
in each participant’s mean across sessions (σλ

2) the variance due to 
means of voxels (as deviations from participant means) within each 
participant-session (σπ

2), and error variance (σε
2)—the variance in de-

viations of each voxel value from the value implied by participant means 
plus participant-session means. The proportion of variance due to the 
mean of each participant-session reflects internal consistency of voxels 
within a parcel, which we calculate as 

ICCwithin =
σ2

π
σ2

λ + σ2
π + σ2

ϵ
.

The medians and 95% credible intervals of the resulting posterior 
distributions of ICCwithin were interpreted as the voxel-to-voxel consis-
tency of within-individual, within-session neural responses in each 
parcel. 

This approach estimates how much the data from voxels within a 
specific region deviate from the mean from all voxels in that region, for 
that participant in that session; this estimate is conceptually similar to 
the internal consistency of items in a scale commonly used as an estimate 
of the reliability of self-report scales. Higher estimates reflect higher 
consistency in BOLD signal across voxels in a parcel for each participant, 
at each session (i.e., the BOLD signal varies in a consistent way for all 
voxels in a particular parcel or subcortical region for each participant, at 
each session). Note that unlike the above ICCwithin equation, the equa-
tion for multilevel internal consistency also divides the error variance 
term by the number of items. Given that the number of voxels in each of 
our parcels is large (median number of voxels per parcel = 301, IQR 221 
– 389), we report the raw proportion of variance instead, which is a 
more conservative approach. Also note that this metric was evaluated 
using the unsmoothed data. Smoothing is a standard pre-processing step 
in task-based fMRI analysis, but will inflate estimates of the true vari-
ance ratio within a parcel because it eliminates some amount of the 
unshared (i.e., error) variance. In order to further ameliorate the 
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potential influence of smoothness we additionally computed ICCs for 
random subsets of 15 voxels from each parcel rather than from every 
voxel within a parcel. 

Other approaches for estimating reliability of BOLD signal in task 
fMRI have been developed for event-related designs using individual 
trials as the unit of measurement (Chen et al., 2021). These methods 
cannot be applied here given the block design of our task and the strong 
habituation that occurs in both cortical and subcortical regions during 
emotion processing tasks (Breiter et al., 1996; Fischer et al., 2003). 

Smoothness and Internal Consistency. Given that other properties of 
the BOLD signal aside from task-related neural responses may contribute 
to correlations of voxels that are spatially proximal, we consider these 
estimates as an upper bound of the amount of variance in BOLD signal 
over time that could reflect internally consistent within-individual 
variation. To probe whether these other properties of the BOLD signal 
are driving internal consistency estimates, we additionally assess the 
association between smoothness of the spatial signal and our measure of 
internal consistency. For each cortical parcel, subcortical ROI, and size- 
matched control region, for each participant, for each session, we esti-
mated the smoothness of the first-level residuals using 3dFWHMx in 
AFNI (Cox, 1996; Cox and Hyde, 1997). We then regressed the estimates 
of internal consistency on the number of voxels in each parcel and the 
average smoothness of each parcel, each allowed to vary as a function of 

anatomy classified as cortex, subcortex, and control region. Each pre-
dictor was encoded using smooth functions (Wood, 2017), and the in-
ternal consistency outcome was modeled as distributed beta to account 
for the bounded values in [0, 1]. We compared this model to a con-
strained model including only the linear effect of parcel size and random 
intercept by anatomy (see supplemental text for more details). Model 
comparison employed efficient approximate leave-one-out cross--
validation (Vehtari et al., 2018), which provides an expected log 
pointwise predictive density difference (ΔELPD) between models as well 
as standard errors of that difference. Models were considered 
non-equivalent if the absolute size of the ΔELPD exceeded two standard 
errors, and the simplest (i.e., constrained) model was retained in 
absence of evidence of non-equivalence. 

2.5.2. Predictors of longitudinal within-individual variation in brain 
activity 

Mood. Negative affect was assessed using the Positive and Negative 
Affect Scale (PANAS), a twenty-item measure assessing positive and 
negative affect (Watson et al., 1988). The general form of the PANAS 
was used, and participants were asked to indicate the extent to they felt 
this way over the past month. Participants respond to each affective 
state (e.g., excited, interested, nervous, hostile) on a 5-point Likert scale 
ranging from 1 (very slightly or not at all) to 5 (extremely). The PANAS 

Fig. 2. Methods used to estimate internal consistency. A: The unit of analysis is the voxel contrast parameter value within a cortical parcel or subcortical region 
of interest (ROI) from the contrast for Fear > Neutral measured for each participant at each month. B: Internal consistency is operationalized as the similarity (in rank 
order of voxels) of the signal across participant-sessions; high internal consistency means that voxels within a parcel for one participant-session tend to be similar to 
one another as compared to variation across participant-sessions. C: The data are observations for a particular voxel within a parcel from each participant, for each 
month; we estimate an ICC based on all voxels in that parcel. This yields N x S x V rows of data for each parcel, where N is the sample size, S is the number of sessions 
(months), and V is the number of voxels in the parcel. D: To estimate internal consistency, we compute an ICC that decomposes variance into the variance in 
participant means across all months, the mean for each session for each participant, and error variance, after conditioning on the group means for each session. The 
ICC is computed as the variance in participant-session means over the total variance. This is computed for each of the 414 parcels and subcortical ROIs, and 5 regions 
of no-interest (see Methods for details). 
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has excellent internal consistency and has demonstrated convergent, 
discriminant, and predictive validity in a number of investigations 
(Watson et al., 1988; Watson and Walker, 1996). The PANAS was 
administered at each monthly visit to assess mood over the month since 
the previous visit. 

Sleep. Daily sleep duration was assessed via an actigraphy wristband 
participants wore continuously for the duration of the study. The 
wristbands used accelerometer data collected in 1-min epochs and 
proprietary algorithms to detect sleep and awake states. These devices 
have been validated against polysomnography and EEG, with excellent 
sensitivity (i.e., ability to detect true sleep), and adequate specificity (i. 
e., ability to detect true wake; de Zambotti et al., 2016; Liang et al., 
2018). We collected a total of 6824 daily sleep observations. We 
computed daily sleep duration in hours, aggregating over potentially 
multiple sleep events in the same day (e.g., naps, fragmented night 
sleep), and not including awake time between sleep events. Daily sleep 
duration was computed in hours each day for the 24-h periods from 7pm 
to 7pm, and then averaged across the two weeks occurring prior to each 
scan session. See supplement and Vidal Bustamante and colleagues 
(2020) for more information on the actigraphy devices and missing data. 

Stressful Life Events (SLEs). SLEs occurring in the past month were 
assessed at each visit using the UCLA Life Stress Interview, a semi- 
structured interview designed to objectively measure the impact of life 
events (Hammen, 1988). The interview assesses acute life even-
ts/episodic stressors (e.g., failing a test, break-up of a romantic rela-
tionship) and chronic stress (e.g., ongoing conflict in the home, 
long-term medical issues). The interview has been extensively vali-
dated and adapted for use in adolescents (Daley et al., 1997; Dohren-
wend, 2006; Dohrenwend and Shrout, 1985, 1985; Hammen, 1991). 
Structured prompts are used to query numerous domains of life (i.e., 
peers, parents, household/extended family, neighborhood, school, aca-
demic, health, finance, and discrimination). Each reported stressor is 
probed to determine timing, duration, severity, and coping resources 
available. Research personnel objectively coded the severity of each 
experience on a 9-point scale ranging from 1 (none) to 5 (extremely 
severe), including half-points. Following prior work, a total episodic 
stress score was computed by taking the sum of the severity scores of all 
reported events, which reflects both the number and severity of acute 
stressors (Hammen et al., 2000), hereafter referred to SLEs. If the 
participant did not report any SLEs, they received a score of zero for that 
month. The severity of chronic stressors occurring in each domain were 
coded on the same scale. The chronic stress score for the domain where 
the participant was experiencing the highest amount of ongoing stress 
was used in analysis. The interview was administered at each monthly 
visit to assess SLEs and chronic stress occurring since the previous visit. 

2.5.3. Modeling longitudinal within-individual variation in brain activity 
To evaluate whether mood, sleep, and SLEs were associated with 

within-individual variation in neural response to aversive cues, we 
implemented voxel-wise and parcel-level multilevel models designed to 
disaggregate between- and within-person variation in longitudinal data. 
A frequentist power analysis from simulation indicates that we have 
80% power to detect a standardized regression coefficient of .17 (see 
supplement for power across effect sizes and further details). 

Neuropointillist. Traditional software packages for analyzing task- 
based fMRI data are limited in the types of statistical models that can 
be estimated to examine predictors of task-related activation and 
involve a number of meaningful limitations when examining longitu-
dinal data—for a lengthy discussion of this issue, see Madhyastha and 
colleagues (2018). As a result, most longitudinal fMRI studies using 
complex longitudinal modeling approaches have extracted BOLD signal 
from ROIs and estimated models outside of fMRI software packages 
(Braams et al., 2015; Ordaz et al., 2013), limiting the analysis to specific 
ROIs rather than taking a whole-brain voxel-wise approach, which re-
mains a common approach to analyzing fMRI data in cognitive 
neuroscience. 

To address this issue, one of the authors of this work (TM) developed 
an R package ‘Neuropointillist’ that allows any model that can be 
specified in R to be estimated in fMRI data in each voxel of the brain 
(Madhyastha et al., 2018). Neuropointillist assembles longitudinal 
pre-processed and spatially normalized longitudinal fMRI data into a 
long-form dataset, where each row represents data from a particular 
voxel in a particular participant at a particular time. Neuropointillist 
accepts a model to be executed on each voxel in the dataset, written as a 
function called from R. The specified model is applied to every voxel, for 
every participant, and each measurement occasion. This affords com-
plete flexibility to evaluate any statistical model of interest for 
voxel-wise fMRI analysis, including longitudinal models. The statistical 
parameter estimates obtained from first-level analyses can also be im-
ported into traditional fMRI packages. See Fig. S4 for greater detail. 
Neuropointillist is freely available; for details and documentation see: 
http://github.com/IBIC/neuropointillist. 

Person-level models. Person-level models were estimated in FSL. Task- 
related regressors were created by convolving a boxcar function of phase 
duration with the standard (double-gamma) hemodynamic response 
function for each condition of the task (fear, happy, neutral, scrambled). 
A general linear model was constructed for each participant. 

Longitudinal Analysis, voxel-level. Individual-level estimates of BOLD 
activity were submitted to group-level random effects models using 
Neuropointillist (Madhyastha et al., 2018). Voxel-wise models were 
implemented in R (R Core Team, 2021) using the nlme package (Pin-
heiro et al., 2020) using restricted maximum likelihood (REML), with 
the intercept allowed to vary randomly across participants. This method 
is robust to bias when data are missing at random (Matta et al., 2018). 
We did not employ Bayesian estimation in this case due to its high 
computational cost. We first estimated unconditional models including a 
term only for time to examine linear changes in voxel-wise BOLD signal 
across the ten sessions. To dissociate between- and within-person effects 
of SLEs, we used within-individual centering (i.e., centering each par-
ticipant’s monthly observations around their person-specific mean 
across the year-long study period) and between-participant centering at 
the year-level (i.e., centering each participant’s mean for the entire 
study period relative to the overall mean for the entire sample). This 
approach orthogonalizes variation in a given predictor into between- 
and within-person components (Enders and Tofighi, 2007), accounting 
for the dependent nature of the data both over time and 
within-participant, while controlling for trait-level characteristics of the 
predictor (i.e., average level of negative affect, sleep duration, or 
severity of SLEs across the entire year). We estimated five models pre-
dicting BOLD signal for the contrast of fearful > neutral faces using the 
following predictor, each decomposed into between- and 
within-individual components as described above: 1) negative affect; 2) 
positive affect; 3) sleep duration; 4) acute SLEs; and 5) chronic stress. 
This approach allowed us to examine variation in BOLD signal as a 
function of within-individual variation in each of these factors after 
controlling for average between-person differences in each. 

Voxel-wise models included a main effect of time (coded as the 
number of months since the first study visit), and these within-person 
and between-person centered stress variables as fixed effects. We used 
the clubSandwich package (Pustejovsky, 2019) to compute cluster-robust 
standard errors in the presence of possible autocorrelation (Pustejovsky 
and Tipton, 2018), and apply the Satterthwaite correction to the degrees 
of freedom used to compute the p-value of the coefficient test. This 
p-value was converted to a Z-score and used as the test-statistic. 

To correct for multiple comparisons in whole-brain analyses, family- 
wise error (FWE) rate was controlled at α=.05 for each model using 
Equitable Thresholding and Clustering (ETAC) cluster correction 
implemented in AFNI (Cox, 2019). The ETAC method allows detection of 
both small and large clusters by establishing multiple combined 
cluster-forming p-value/cluster-size thresholds that together control the 
FWE across permuted brain maps. For each model, 1000 permutations 
were generated. The resulting 1000 permuted z-score maps were then 
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used to generate (using 3dXClustSim) and apply (using 3dMultithresh) the 
ETAC thresholds to the statistical parameter maps from the group-level 
analysis. 

We generated 1000 permutations for each image using the following 
procedure. Specifically, first, permutations matrices were generated 
appropriately for nested data by shuffling observation indexes within 
participants (Winkler et al., 2015, 2014). We then implemented the 
procedure described by Freedman and Lane (Freedman and Lane, 1983) 
as follows:  

1. regress the dependent variable (Y) on covariates (i.e., time, and 
group-centered mean scores of the dependent variable), saving the 
residuals and the predicted values of Y;  

2. permute the residuals according to the ith row of the permutation 
matrix, then add the permuted residuals to the predicted Y values to 
produce Y*;  

3. regress Y* on the within-person centered variable of interest, X, and 
covariates, and save the permutation test statistic for the association 
between X and Y*. 

As in the group-level model, we used cluster-corrected standard er-
rors to derive a t-statistic with Saterthwaite-approximated degrees of 
freedom. The p-value of this t-statistic was transformed to a Z-score, and 
saved as the permutation test statistic. The resulting 1000 permuted Z- 
score maps were then used to generate (using 3dXClustSim) and apply 
(using 3dMultithresh) the ETAC thresholds to the statistical parameter 
maps from the group-level analysis. 

Significant clusters reveal regions of the brain where BOLD signal 
systematically increased or decreased during months when participants 
had greater negative affect, positive affect, sleep duration, or exposure 
to stress than was typical for them across the year. 

Longitudinal Analysis, parcel-level. For each parcel in the Schaefer 400 
cortical parcellation scheme (Schaefer et al., 2018), as well as the 18 
anatomically-defined subcortical areas in the Harvard/Oxford, we 
extracted voxel-level estimates for each participant-session. We then 
estimated the same model as above using bayesian estimation to be 
consistent with the reliability and internal consistency analyses at the 
parcel level in R (R Core Team, 2021) with brms (version 2.15.0; Bürk-
ner, 2018, 2017), which averages across the voxels in a parcel in a 
model-based way. We obtained a posterior probability distribution for 
the estimate of each parameter of interest. Using this posterior distri-
bution, we threshold the image so that the combined probability of 
making an error in the sign (Gelman and Carlin, 2014) of any of the 
coefficients is constrained to be less than 5%. To implement this, we first 
compute the proportion of the posterior distribution that has the same 
sign as the median, ordering the parcels from the largest to smallest 
value. We then compute the cumulative product, which is the proba-
bility of not making a sign error. We decide to interpret and display the 
set of coefficients that are most likely in the correct direction and that 
maintain the probability of sign error at < 5%. We also present uncor-
rected analyses examining effects in left and right amygdala for each 
predictor because so much previous work has focused on this region. 
These results are presented in the supplement. 

3. Results 

3.1. Test-retest reliability 

We first estimated ICCs across adjacent sessions to examine test- 
retest reliability (i.e., temporal stability) of neural activation in 
response to aversive cues (fearful > neutral faces) within 400 cortical 
parcels, 14 subcortical regions, and 4 control regions (see Fig. 1 and 
Methods for details). Higher ICCs reflect higher test-retest reliability in 
BOLD signal across participants (i.e., a participant with high BOLD 
signal in a particular region in a particular session is also likely to have 
high BOLD signal in that parcel on other sessions, relative to others in 

the sample). 
ICCs for test-retest reliability were uniformly small in magnitude and 

close to zero: ranges and interquartile intervals (IQR) for median pos-
terior ICCs were ICC = [.04, .15] (IQR .06-.08; N = 400) across parcels, 
ICC = [.05, .12] (IQR .07-.08; N = 14) across sub-cortical regions, and 
ICC = [.04, .12] (IQR .06-.08; N = 24) across size-matched control re-
gions (see Fig. 3A). This pattern indicates that the test-retest reliability 
of BOLD signal in response to aversive stimuli (fearful > neutral faces) is 
uniformly low across the brain. 

3.2. Internal consistency 

Next, we estimated the internal consistency of parcels and subcor-
tical regions across voxels (see Fig. 2 and Methods for details). We used 
the same cortical parcels, subcortical regions, and control regions used 
to compute test-retest reliability to evaluate the internal consistency of 
the signal. Higher ICCs reflect greater consistency in BOLD signal across 
voxels in a particular region for each participant, at each session (i.e., 
the BOLD signal varies in a consistent way for all voxels in a particular 
region for each participant, at each session). The degree of internal 
consistency would indicate whether signal changes across these cortical 
parcels and subcortical regions reflect coherent signal rather than 
random fluctuations, and so inform the degree to which measurement 
error and high within-individual variation contributes to poor test-retest 
reliability in neural responses to aversive cues (fearful > neutral faces). 

ICCs were substantially higher in magnitude than for test-retest 
reliability: ranges and IQRs for median posterior ICCs were ICC =
[.13, .70] (IQR .37-.51) across cortical parcels, ICC = [.22, .45] (IQR .26- 
.34) across sub-cortical regions of interest, and ICC = [.14, .57] (IQR .28- 
.41; N = 24) in size-matched control regions (see Fig. 3B). These patterns 
demonstrate substantially higher within-person, within-session internal 
consistency than test-retest reliability. Estimates in subsamples of 15 
voxels within each cortical parcel or subcortical ROI correlated nearly 
perfectly (r = .96) with estimates from all voxels. We interpret these 
patterns to suggest that the low test-retest reliability across sessions 
reflects, in part, internally consistent intraindividual variability in 
neural responses to aversive cues over time. 

As a point of reference, we additionally compute Cronbach’s alpha as 
another commonly used metric of internal consistency. The primary 
difference between the ICC and and alpha is that alpha scales the error 
variance by the inverse of the number of items. As would be expected, 
this increases the estimate when using all voxels, α = [0.98, 1.00] (IQR 
0.99-1.00), or even when a subset of 15 voxels are selected randomly 
from parcels (in order to keep scaling factor of the error variance 
reasonably small), with α = [0.65, 0.97] (IQR 0.90-0.94) for cortical 
parcels, and α = [0.81, 0.93] (IQR 0.84-0.88) for subcortical regions. 

3.3. Smoothness and internal consistency 

Given the spatial nature of the analysis, to determine how smooth-
ness contributes to the internal consistency observed we conducted 
additional analyses to examine the association of smoothness with es-
timates of internal consistency. A model including smoothness did not fit 
significantly better than a model with only parcel size and anatomy, and 
in fact fit worse (ΔELPD = − 31.2, SE = 23.9; see Methods for a 
description of the ELPD), indicating that BOLD signal smoothness was 
not associated with internal consistency estimates after controlling for 
parcel size; this is also visible as nearly flat trends in the effect of 
smoothness in the plots (Fig. 4A; see full model output in supplement, 
and Fig. S5 for zero-order association of all three predictor variables). 
The model-expected internal consistency (from the constrained model) 
for each anatomy type at the median parcel size (312 voxels) were: 
cortex, .44 (95% CI = [.43, .45]); subcortex, .36 (95% CI = [.31, .42]); 
and size-matched control, .35 (95% CI = [.30, .41]; Fig. 4B), suggesting 
greater internal consistency in cortical parcels. 
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3.4. Changes in neural response to aversive cues over time 

Before examining correlates of within-individual variation in neural 
response to aversive cues (fearful > neutral faces), we first estimated 
unconditional growth models across the ten monthly scans. Linear de-
creases in neural response in this contrast were observed in the ventral 
visual stream, including fusiform and lateral occipital cortex; superior 
temporal sulcus; dorsomedial prefrontal cortex (PFC); and right middle 
frontal gyrus (MFG) and inferior frontal gyrus (IFG) (Fig. 5; Tables S2- 
S3). This pattern of habituation across monthly sessions is broadly 
consistent with evidence in the literature for within-session habituation 
to emotional faces in medial and lateral temporal cortex (Fischer et al., 

2003). There were no regions where linear increases in activation over 
time occurred. 

3.5. Predicting within-individual variation in task-related neural 
activation 

Having demonstrated some internal consistency of neural responses 
to aversive cues, we next attempted to explain the fluctuations in these 
responses within-individuals over time. Specifically, we examined 
whether within-individual variation in mood, sleep, and stressful life 
events across time were associated with variability in neural response to 
aversive stimuli (i.e., fearful > neutral faces) in voxel-wise multilevel 

Fig. 3. Test-Retest Reliability and Internal Consistency of fMRI response to aversive stimuli. A: Proportion variance due to participant means (test-retest 
reliability) across 400 cortical parcels,14 subcortical ROIs, and 24 size-matched control regions. Point estimates are filled with a color corresponding to the ICC, 
which maps onto the parcellated surface (bottom right corner) with whiskers showing 95% credible intervals. B: Proportion variance due to participant-session means 
(internal consistency), annotated as in (A). Shaded region indicates 95% confidence interval of expected value from the best fitting model predicting internal 
consistency for each anatomy type (see methods). 
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models that partitioned variance in stress into within-individual and 
between-individual components (see Methods for details). These vari-
ables were not highly correlated within-person (ρ = [− .11, .25]; see 
Table S4 for the full between- and within-person correlation table), so 
we did not attempt to isolate the unique effect of each variable while 
controlling for the others. Clusters reflect regions of the brain where 

monthly fluctuation in the predictor (i.e., mood, sleep, or stress) is 
associated with corresponding within-individual change in neural 
response to aversive cues (fearful > neutral faces). Across all analyses, 
parcel-level analyses seemed more sensitive with more widespread as-
sociations than in whole-brain analysis with cluster correction. 

Mood. The PANAS demonstrated good internal consistency in this 

Fig. 4. Effect of smoothness, size, and anatomy on internal consistency. Each panel shows model-expectations when the parcel size is as indicated in the panel 
titles, corresponding to the 1/6, 3/6, and 5/6 quantiles. Overlaid data come from parcels with sizes in a range centered on those quantiles (i.e., within the first, 
second, and third third of the data). A: Association between smoothness and internal consistency in the fully unconstrained model. The x-axis has been rescaled to 
foreground regions with the highest density of data. Whiskers on data points show the 95% credible interval for internal consistency estimates. B: Model expectations 
from the best fitting model highlighting expected differences in internal consistency between anatomy types. Cortex: Schaefer 400 parcels; subcortex: Harvard-Oxford 
subcortical regions; control: size-matched control regions. 
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sample across months; with Chronbach’s α = [.78, .92] (IQR = .81 - .90) 
across months for negative affect. The ICC(1,1) for negative affect was 
0.44 and for positive affect was 0.62, indicating that the majority of 
variance in negative affect and more than one-third of the variance in 
positive affect was attributable to within-individual variance (Fig. 6). 

Monthly fluctuations in negative affect were related to within- 

individual variation in neural responses to aversive stimuli. On 
months when participants reported higher negative affect than was 
typical for them, neural responses to aversive cues (fearful > neutral 
faces) were lower in a small cluster in IFG in whole-brain analysis 
(Fig. 7A; Table S5). In parcel-level analysis, neural responses to aversive 
cues were lower in right IFG, MFG, and temporal-parietal-occipital 

Fig. 5. Effect of time for contrast of Fear > Neutral. A: Statistical map represents t-scores for the effect of study month on the contrast between viewing Fear faces 
versus Neutral faces; values are plotted for voxels within clusters determined to be significant. B: Parcels with 99.988% credible intervals excluding 0 are displayed 
using colors representing the effect size for each parcel in terms of standard deviations of the parcel-level outcome for a unit change in the predictor on its orig-
inal scale. 

Fig. 6. Variation in predictor variables over time. A value for each measurement, for each participant across all 10 months are shown, with separate lines for each 
participant. Specific participants are highlighted to illustrate examples with high variability or extreme mean values. Discontinuous lines reflect missing data. 
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junction (Fig. 7B; Table S6). 
Sleep. Sleep duration varied widely over time within-individuals. A 

majority of the variance in sleep duration occurred within-individuals 
when examined at the daily level (ICC=0.12) as well as when aggre-
gated across the two-week period prior to each scan (ICC=0.38) (Fig. 6). 

Within-individual variation in sleep duration was measured objec-
tively using actigraphy in the two weeks preceding the scan was also 
related to within-individual variability in neural activation. On months 
characterized by less sleep than usual, participants exhibited lower 
activation in three prefrontal clusters spanning right (MFG, frontal pole, 
and frontal orbital cortex in response to aversive stimuli (fearful >
neutral faces) in voxel-wise analysis (Fig. 8A, Table S7). In parcel-level 
analysis, less sleep than usual was similarly associated with reduced 

activation in right MFG and frontal pole and higher activation in supe-
rior temporal sulcus, precuneus, cuneus, and precentral and postcentral 
gyrus (Fig. 8B, Table S8). 

Stress. The ICC for SLEs was 0.25 and 0.70 for chronic stressors, 
indicating that the majority of variance in exposure to SLEs and about 
one-third of the variance in chronic stress occurs within-individuals 
(Fig. 6). The within-individual correlation between SLEs and chronic 
stressors was rwithin= .25, p < .001. 

Monthly fluctuations in both acute SLEs and chronic stres-
sors—assessed using gold-standard interviews—were similarly related 
to within-individual variation in neural responses to aversive cues. In 
voxel-wise analysis, adolescents exhibited heightened neural response 
to aversive stimuli (fearful > neutral faces) in a cluster spanning 

Fig. 7. Associations of monthly within-individual fluctuations in negative affect with within-individual variation in neural response to aversive cues. To 
conduct within-individual analyses, monthly values of each predictor were first centered around each participant’s annual mean; and these annual means, centered at 
the group mean, were included as a covariate; this approach separates variance at the within-person level from between-person variance. All analyses include month 
number as a covariate. A: statistical map colors represent t-scores for each effect; values are plotted for voxels within clusters determined to be significant. Scatterplot 
for the cluster shows mean contrast values on the y axis with the predictor variable on the x axis. The line is the expectation from a model based on mean ROI 
estimates. B: Parcels with 99.988% credible intervals excluding 0 are displayed using colors representing the effect size for each parcel in terms of standard deviations 
of the parcel-level outcome for a unit change in the predictor on its original scale. Scatterplots for the example parcels show points for 15 voxels per participant- 
session with a line for the median of the posterior linear prediction surrounded by the 95% credible interval. 
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bilateral PCC and precuneus and reduced neural response in a cluster 
encompassing bilateral dorsal ACC and dorsomedial PFC on months 
when they experienced more acute SLEs than was typical for them 
(Fig. 9A, Table S9). These same clusters were observed in parcel-level 
analysis, as well as reduced activation in bilateral insula, left superior 
parietal cortex, and left temporoparietal junction and greater activity in 
bilateral superior frontal gyrus and lateral inferior temporal cortex 
(Fig. 9B, Table S10). 

For chronic stress, we observed a similar pattern of increased neural 
response to aversive stimuli (fearful > neutral faces) in one cluster in 
bilateral precuneus on months when adolescents experienced greater 
chronic stress than usual. We additionally observed reduced within- 
individual neural response in a cluster spanning right IFG and MFG 

and in right putamen on months characterized by higher chronic stress 
than usual (Fig. 9C, Table S11). The precuneus cluster was also observed 
in parcel-level analysis, along with elevated activation in left cuneus and 
superior frontal gyrus (Fig. 9D and Table S12). 

Amygdala. Left amygdala was credibly associated with the linear 
effect of time (Fig. S6). The 95% credible intervals included zero for the 
association between each other predictor and left and right amygdala 
activity during emotion processing. 

4. Discussion 

Leveraging a unique sample of adolescents scanned monthly across 
one year, we investigated the reliability and internal consistency of 

Fig. 8. Associations of monthly within-individual fluctuations in sleep duration and within-individual variation in neural response to aversive cues. To 
conduct within-individual analyses, monthly values of each predictor were first centered around each participant’s annual mean and these annual means, centered at 
the group mean, were included as a covariate; this approach separates variance at the within-person level from between-person variance. Effect of (shorter) sleep 
duration on Fear > Neutral contrast. All analyses include month number as a covariate. A: statistical map colors represent t-scores for each effect; values are plotted 
for voxels within clusters determined to be significant. Scatterplot for the example cluster shows mean contrast values on the y axis with the predictor variable on the 
x axis. The line is the expectation from a model based on mean ROI estimates. B: Parcels with 99.988% credible intervals excluding 0 are displayed using colors 
representing the effect size for each parcel in terms of standard deviations of the parcel-level outcome for a unit change in the predictor on its original scale. 
Scatterplots for the example parcels show points for 15 voxels per participant-session with a line for the median of the posterior linear prediction surrounded by the 
95% credible interval. 
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neural responses during emotion processing over time and within in-
dividuals. Although the test-retest reliability of neural responses across 
time was quite low, internal consistency of BOLD signal across voxels 
was substantially higher, though this is tempered somewhat by the 
substantial estimates found in size-matched control regions where no 

construct-valid variance is expected. Although the ICCs for internal 
consistency were somewhat lower than standards set for other types of 
assessments (e.g., interviews, surveys), the estimates obtained here are 
notable given that they reflect proxy measurement of a complex bio-
logical system. Virtually none of the variation in BOLD signal over time 

Fig. 9. Associations of monthly within-individual fluctuations in stressors and within-individual variation in neural response to aversive cues. To conduct 
within-individual analyses, monthly values of each predictor were first centered around each participant’s annual mean and these annual means, centered at the 
group mean, were included as a covariate; this approach separates variance at the within-person level from between-person variance. A, B: Associations of stressful 
life events with within-individual changes in neural responses in the Fear > Neutral contrast; C, D: Associations of chronic stress with within-individual changes in 
neural responses in the on Fear > Neutral contrast. All analyses include month number as a covariate. A, C: statistical map colors represent t-scores for each effect; 
values are plotted for voxels within clusters determined to be significant. Scatterplot for the example cluster shows mean contrast values on the y axis with the 
predictor variable on the x axis. The line is the expectation from a model based on mean ROI estimates. B, D: Parcels with 99.988% credible intervals excluding 0 are 
displayed using colors representing the effect size for each parcel in terms of standard deviations of the parcel-level outcome for a unit change in the predictor on its 
original scale. Scatterplots for the example parcels show points for 15 voxels per participant-session with a line for the median of the posterior linear prediction 
surrounded by the 95% credible interval. 
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reflected stable between-individual differences, whereas nearly half of 
the variance in cortical parcels reflected internally consistent variance 
within participants, within sessions, compared to one-third in size- 
matched control regions. These patterns suggest that instead of reflect-
ing trait-like differences across people, neural responses to aversive cues 
demonstrate high within-individual variation over time, as well as 
substantial measurement error when considering the parcel as the unit 
of measurement. However, while internal consistency was higher in 
cortical parcels than size-matched control regions, subcortical regions 
were similar to control regions, suggesting that task response may not be 
driving signal coherence in subcortical regions. We further demonstrate 
that this within-individual variability is associated with multiple factors 
that fluctuate meaningfully over time within individuals. Specifically, 
within-individual variation in mood, sleep, and exposure to SLEs was 
associated with dynamic monthly changes in brain activity during 
emotion processing. These rapid, spatially consistent changes in brain 
activity suggest that within-individual variation in psychological and 
physiological states as well as environmental experiences dynamically 
influence brain activity during adolescence. More broadly, these find-
ings add to growing evidence that precision neuroscience methods have 
the power to reveal properties of brain function that are not apparent in 
cross-sectional, between-individual approaches. 

The test-retest reliability of BOLD signal in response to aversive cues 
across the ten neuroimaging sessions was low, indicating poor test-retest 
reliability of neural responses during emotion processing. This pattern 
contrasts with two prior reports documenting high reliability in regions 
of interest for activation during similar emotion processing tasks across 
two sessions (Gee et al., 2015; Haller et al., 2018). These findings are 
consistent, however, with a recent meta-analysis and analysis of large 
cohorts documenting low test-retest reliability of neural response to a 
range of fMRI tasks, with affective processing tasks exhibiting the lowest 
reliability (Elliott et al., 2020), and additionally extend the finding of 
low test-retest reliability to a much shorter time-scale (1 month). These 
findings have broad implications for affective neuroscience, as these 
types of emotion processing tasks have been frequently used to study 
differences in brain function in relation to psychopathology, personality, 
environmental experiences, and genetics (Canli et al., 2001; Etkin and 
Wager, 2007; Gray et al., 2005; Groenewold et al., 2013; Hariri et al., 
2002; McCrory et al., 2011; Monk et al., 2008; Thomas et al., 2001; 
Tottenham et al., 2011). Together with the Elliot et al meta-analysis 
(Elliott et al., 2020), our results suggest that neural responses to 
affectively-salient cues are poor candidates for research on brain-based 
biomarkers of stable between-person, i.e., interindividual, variation. 

The degree to which this low test-retest reliability extends to neural 
responses to other types of tasks and metrics of brain activity is an 
important question for future research. Higher test-retest reliability es-
timates were observed in the recent meta-analysis for tasks tapping 
motor and sensory function as well as working memory (Elliott et al., 
2020), suggesting that test-retest reliability varies meaningfully as a 
function of task design and processing domain. Indeed, multivariate 
patterns of neural response to task demands identified using machine 
learning may be more stable over time than responses in individual 
brain areas (Kragel et al., 2021). Functional connectivity of cortical 
networks assessed using resting-state fMRI may be better suited to 
studying between-person differences. Although the topography of 
resting-state cortical networks is highly variable across people (Braga 
and Buckner, 2017; Gordon et al., 2017), network organization and 
functional connectivity is highly stable within-individuals over time, 
with most variance due to stable differences across people (Gratton 
et al., 2018; Laumann et al., 2017). On the other hand, recent work 
suggests that the magnitude of brain-behavior associations using 
resting-state functional connectivity metrics are small and require 
thousands of individuals to be identified reliably (Marek et al., 2022). 

Our findings suggest that poor test-retest reliability of task-evoked 
BOLD signal likely reflects both high measurement error and high 
within-individual variability. About half of the variance in cortical 

parcels and two-thirds in subcortical regions reflects measurement error. 
The internal consistency of neural response in subcortical regions was 
only marginally higher than in size-matched control regions in white 
matter, and ventricles. Virtually all of the remaining variance reflects 
reliable within-individual variation in the BOLD over time for neural 
responses during emotional processing. This raises questions about a 
number of apparently replicable findings that have emerged from 
between-individual studies of brain activation in these types of emotion 
processing tasks. For example, elevated neural response in the amygdala 
and salience network to aversive cues has frequently been observed 
among people with depression and anxiety disorders (Monk et al., 2008; 
Swartz et al., 2015b; Thomas et al., 2001) and those who have experi-
enced childhood trauma (McLaughlin et al., 2019). These findings raise 
the intriguing possibility that rather than reflecting trait-like variability 
as a function of psychopathology or early-life experiences, these indi-
vidual differences in neural responses to affective cues may instead 
reflect state-like factors that vary consistently as a function of psycho-
pathology or exposure to trauma, such as arousal, affect, concentration, 
sleep, physical activity, or exposure to recent stressors. Future research 
utilizing dense sampling from the same individuals is needed to explore 
this possibility. 

One solution to dealing with the high measurement error and small 
effect sizes for brain-behavior associations is to use enormous sample 
sizes, but another is to utilize the type of densely-sampled longitudinal 
data of the type we present here (Marek et al., 2022). Within-individual 
analysis combined with data reduction using parcellations seems to 
provide good sensitivity in this case. While there is very little reliable 
between-person variability in neural responses during emotion pro-
cessing, there is internally consistent systematic variability in BOLD 
signal fluctuations over time within-individuals. In addition to the 
methods used here to increase the signal of constructs of interest, this is a 
potent reminder that there are many other ways to improve signal 
detection aside from increasing sample size. Still another approach that 
holds promise in that regard is using individual-level parcellations of 
network organization given notable individual differences in network 
topography (Braga and Buckner, 2017; Gordon et al., 2017). Indeed, 
recent work suggests that brain-behavior associations are larger when 
individual-specific parcellations are used (Kong et al., 2021, 2019). 

It is important to note that there are many possible sources of state 
variance in the BOLD signal aside from task-related neural activity. Even 
though covariates can reduce many of these sources, it is not possible to 
completely eliminate them. For example, BOLD signal may be influ-
enced by heartbeat, respiration, hydration, and motion (Liu, 2016) that 
are idiosyncratic to a particular person during a particular session, but 
spatially coherent across voxels in a parcel. Other properties of the MR 
signal may also contribute to internal consistency of BOLD signal within 
parcels, for example, aspects of the scanner environment like tempera-
ture, humidity, or how many scans were done previously. In the present 
study, we computed internal consistency for the contrast of fearful 
relative to neutral faces. The above state-like sources of noise, if they are 
fairly stable across the duration of the task, are likely somewhat 
ameliorated when we subtract the signal during neutral blocks from 
signal during fear blocks. In addition, if spatial coherence in the BOLD 
signal were primarily responsible for the internal consistency we see 
within-individuals, we would expect to observe a positive association 
between smoothness and internal consistency. In contrast, smoothness 
was unrelated to these estimates. However, the above does not address 
the broader question of validity. Indeed, the internal consistency of 
size-matched control regions was non-trivial, indicating that there are 
sources of spatially coherent but invalid signal. As such, we view the 
estimates of internal consistency as upper bounds of the true reliability 
of task-evoked BOLD signal for emotion processing tasks, and certainly 
as a generous upper-bound on validity. 

Importantly, we demonstrate that monthly fluctuations in mood, 
sleep, and exposure to stress predict variation in neural responses to 
aversive cues over time within individuals. Notable convergence was 
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observed across these predictors. Adolescents exhibited decreased acti-
vation in dorsal and ventral lateral PFC in response to aversive stimuli 
on months when they reported lower mood, had less sleep, and expe-
rienced higher exposure to SLEs than was typical for them; we also 
observed decreased activation in dorsal ACC on months characterized by 
less sleep and higher than usual stress. These results demonstrate 
consistent within-individual reductions in neural response to aversive 
cues in regions involved in monitoring control-relevant information (e. 
g., conflict) and implementing control processes (Shenhav et al., 2013). 
Recent evidence demonstrates shared neural representation of aversive 
stimuli and cognitive conflict in dorsal ACC, which suggests that aver-
sive stimuli signal control demands similarly to conflict (Vermeylen 
et al., 2020). Given the absence of a meaningful behavioral response in 
this task, it is unclear what these neural patterns might reflect (Pol-
drack, 2011), although it is worth noting that these PFC regions are also 
recruited in many forms of emotional processing and emotion regulation 
(Buhle et al., 2014; Etkin et al., 2011). Finally, we observed 
within-individual increases in activation in PCC and precuneus—key 
nodes in the default network—in response to aversive stimuli on months 
characterized by higher levels of SLEs and chronic stress and, to a lesser 
extent, higher negative mood. PCC activation occurs in response to 
positive and negative affective stimuli (Maddock et al., 2003), when 
reflecting on emotional states in oneself and others (Ochsner et al., 
2004), and in self-referential processing (Northoff et al., 2006), 
including auto-biographical memory (Sugiura et al., 2005). It is possible 
that aversive stimuli are more likely to trigger self-focused thinking, 
such as rumination, during periods characterized by high levels of stress. 
Indeed, exposure to SLEs is associated with increased engagement in 
rumination in longitudinal studies (Michl et al., 2013; Moberly and 
Watkins, 2008). However, interpretation of these neural patterns is 
speculative. 

To our knowledge, these types of within-individual associations with 
neural activity have not previously been documented. These patterns 
add to growing evidence that precision neuroscience, which focuses on 
repeated sampling of the same individuals, may stimulate progress in 
characterizing individual variation in brain function. While task-related 
BOLD signal—at least in response to affective cues—is likely a poor 
candidate for studying stable individual variation, as some have recently 
argued (Elliott et al., 2020), it may still be suited to studying changes in 
brain function within-individual variation over time. Indeed, we show 
that fluctuations in neural responses over time are associated with 
relevant processes known to vary over time with-
in-individuals—including mood, sleep, and exposure to SLEs. These 
findings parallel recent work in psychology demonstrating high 
within-individual variation in a range of constructs that have histori-
cally been studied in between-person designs—including affect, psy-
chopathology symptoms, and physiological markers—and poor 
correspondence between associations observed in between-participant 
designs from those derived from within-participant longitudinal 
studies (Fisher et al., 2018). Our findings suggest that intensive longi-
tudinal designs that probe neural function in the same individuals over 
time are needed to characterize this within-individual variability, its 
correlates, and important measurement characteristics like reliability 
with more focus on the temporal resolution of the underlying constructs. 

We focus here on neural responses to affectively-salient stimuli. Af-
fective constructs are known to have high within-individual variability 
(Fisher et al., 2018). However, even constructs that are more trai-
t-like—such as working memory—show meaningful variation 
within-individuals over time that are strongly linked to fluctuations, for 
example, in stress (Sliwinski et al., 2006). Although we cannot extrap-
olate from the constructs measured here, it is plausible that neural cir-
cuits that support a range of cognitive and affective constructs 
frequently studied in cognitive neuroscience might exhibit meaningful 
within-individual variability. 

The attention to within-individual variation highlights a broader 
conceptual point about how cognitive neuroscientists design and 

analyze studies. Observing associations between constructs over time 
can be an important tool for unraveling causal effects (Collins, 2006; 
Raudenbush, 2001; Rohrer and Murayama, 2023). Moreover, the degree 
of variation over time can itself be an important predictor or outcome, as 
prior research has shown, for example, in sleep (Vidal Bustamante et al., 
2020), and emotion perception and experience (Nook et al., 2021; 
O’Toole et al., 2020). Even in cross-sectional studies, investigators often 
have repeated measurements, and appropriately interrogating the 
inherent within-individual variation has been shown to be beneficial for 
obtaining reliable measurement of selective attention in the Stroop task 
(Haines et al., 2020). Designing studies to reap the numerous benefits of 
within-individual variability will fortify the empirical value of our 
science. 

4.1. Limitations 

There are several aspects of the current study design and set of an-
alyses that should be considered in interpreting these findings. We were 
not able to address several potential causes of variance in reliability and 
internal consistency here either because of data limitations or scope. 
Most importantly, as stated in the introduction, is the fact that we 
examine reliability and internal consistency, not validity. While reli-
ability is necessary for validity, it is not sufficient. 

The particulars of a given parcellation scheme or set of ROIs may 
impact our estimates. Different parcellations have been shown to affect 
measurements of functional activity and brain-behavior associations, 
and the results here would be expected to be influenced by parcellation 
choice as well (Bryce et al., 2021; Flournoy et al., 2020). We focus on 
subcortical structures and a widely-used cortical parcellation that di-
vides the cortex into 400 regions based on patterns of task-related 
activation and functional connectivity at rest (Schaefer et al., 2018). 
Our estimates, especially for internal consistency, would likely be higher 
for smaller parcels, and lower as parcel size increases, although regis-
tration error might contravene this expectation. Indeed, parcellations 
based on within-person functional connectivity would likely yield the 
highest signal reliability (Kong et al., 2019; Xue et al., 2021). The goal 
here is not to tie our findings to a particular parcellation scheme, but 
rather to examine internal consistency of BOLD signal to explore to what 
extent measurement error causes low test-retest reliability across the 
month-long intervals examined. 

We were not able to evaluate test-retest reliability at other time-
scales, which would be an important next step in corroborating the 
conclusions drawn from the internal consistency results. Such analyses 
should first consider the timescale over which test-retest reliability in 
the particular sensory, cognitive, or affective process in question would 
be expected. At a minimum, higher test-retest reliability would be ex-
pected at extremely short time intervals, with the caveat that well- 
known habituation effects would need to be accounted for as well. 
With regard to the behavioral variables examined here, monthly varia-
tion has been used in prior studies of within-individual variation in 
stressful life events and sleep (Nook et al., 2021; Rodman et al., 2021; 
Vidal Bustamante et al., 2020). Assessing stressful life events at shorter 
intervals, particularly using the objective interview-based approach 
utilized here, is not feasible. However, timescales ranging from days to 
weeks might be more appropriate for capturing meaningful 
within-individual variation in mood. Additional research is needed to 
determine the appropriate timescale for assessing within-individual 
variation in neural function across different modalities. 

This data collection was not designed to test the variability of test- 
retest reliability or internal consistency across multiple fMRI tasks or 
methods of analysis. Even within the domain of affect processing vari-
ation in test-retest reliability would be expected in different kinds of 
emotion processes, but we were not able to test these ideas here. This 
analysis is focused on more traditional analysis methods (contrast- 
based, GLM task fMRI analysis), that remain dominant in the literature, 
and thus the results here do not generalize to more modern, multivariate 
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methods (Marek et al., 2020, 2019). In general, multivariate methods 
have been shown to have higher reliability (Kragel et al., 2021), and 
larger effect sizes (Marek et al., 2020), possibly because they better take 
advantage of widely distributed neural representations. We would 
expect that to hold for these data as well, but produce the same disso-
ciation between test-retest reliability and internal consistency. Investi-
gating the reliability of multivariate methods in multiple ways is an 
important next step in this line of research. 

The degree of reliability and internal consistency we document here 
should be taken as an approximate measure with some caveats. Reli-
ability is not a property of just of a test, but also of the people taking the 
test; in this case, we report on a particular fMRI task in particular parcels 
and ROIs in adolescent females. Researchers sampling from other pop-
ulations, or using different parcels, or a different task, should not derive 
but the most vague expectations from these results. Moreover, these 
estimates were generated using two common approaches to estimating 
reliability, but there is considerably more work to be done in developing 
measurement models for neural data. 

Finally, while we document some internal consistency, we are only 
able to provide cursory evidence as to the validity of this signal. Sup-
porting the validity of this fMRI task as a measure of differences in 
emotional processing, we saw associations with mood, sleep, and mul-
tiple sources of stress that were expected based on between-person 
studies (Arnone et al., 2012; Goldstein-Piekarski et al., 2015; Larson 
and Ham, 1993; Mroczek and Almeida, 2004; Sliwinski et al., 2009; 
Swartz et al., 2015b, 2015a; Wang et al., 2006). However, we do not 
have more proximal measures of emotional processing that would allow 
us to test convergent validity, nor do we have measures that would help 
us rule out other sources of variance that are distinct from emotional 
processing, yet would also be expected to correlate with neural re-
sponses to this task, such as arousal or attention (Zelkowitz and Cole, 
2016). This is, perhaps, the more pressing question for cognitive 
neuroscience at this point. Validity work is often less of a focus in 
behavioral tasks than surveys (Clark and Watson, 2019), but is no less 
important (see Schiavone et al., 2023 for a tool to evaluate multiple 
validities). We often rely on face validity, but this ignores the possibility 
that variations in task performance and neural responses may be caused 
by related but distinct processes. This is an important consideration for a 
precision-neuroscience approach that seeks to discover biomarkers, and 
to lead us toward mechanistic explanations of these processes. 

4.2. Conclusion 

Leveraging an intensive longitudinal study with 10 monthly scans 
per participant, we observe low test-retest reliability of neural responses 
to aversive cues over time. Using a common approach to assessing in-
ternal consistency, we demonstrate that measurement of BOLD signal 
related to emotion processing is moderately consistent within cortical 
regions, suggesting that this temporal instability across months may in 
part reflect high within-individual variation in neural responses to 
affectively-salient cues in addition to measurement error. Internally 
consistent within-individual variation accounted for roughly half of the 
variance in BOLD signal over time in cortical parcels and a third in both 
subcortical regions and size matched control regions, whereas between- 
person differences explained virtually none. Within-individual variation 
in sleep, mood, and stress all contributed to this within-individual 
variability in neural responses. These findings highlight the impor-
tance of evaluating the test-retest reliability of neural responses to other 
types of fMRI tasks to ensure that fMRI studies are designed in a way that 
accurately reflects the underlying temporal properties of the construct 
being measured. Doing so could bring needed nuance to discussions of 
the validity and reliability of task fMRI data for studying individual 
variation in brain function. 
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